Restoration of a damaged dental implant due to removal of a fractured screw: thinking outside the box

Dental implant success has been well documented in the literature; however, failure does occur. Typically, failure can be categorized as either early or late. Dr. Scott Froum, co-editor of Surgical-Restorative Resource, presents a case that highlights a unique method of implant restoration when damage occurs to the implant fixture due to the attempted removal of a fractured screw.

Jun 24th, 2014
Content Dam Diq Online Articles 2012 October Drscottfroum

Dental implant success has been well documented in the literature (1); however, failure does occur. (2) Typically, failure can be categorized as either early or late. Early failure occurs prior to the implant integrating, with causes such as overheating during osteotomy preparation, overpreparation of the osteotomy, implant contamination during surgery, poor bone quality, lack of primary stability, and macro/micro motion. The etiology of late failure is most often either related to a bacterial event (3) such as peri-implantitis and/or biomechanical failure due to occlusal trauma and/or implant overload. (4)

ALSO BY DR. SCOTT FROUM |An alternative to conventional dental implants: short implants

Failure, as it relates to biomechanical issues, is often due to off-angled forces and/or overload on an implant fixture mixed with time. Fatigue of the implant material is often cumulative; certain breakdowns often happen along the way until catastrophic failure occurs (implant fracture). The first sign — “tell” if you are a poker player — of occlusal disharmony is usually the screw loosening. Most often the dentist will tighten the screw and think the problem is solved until loosening occurs again. After this exercise in futility is repeated without addressing the problem of occlusal dysfunction, the screw can ultimately break. Breakage of a screw in an implant fixture can present a complicated situation as the ease of screw removal often depends on the apical-coronal location of the fracture. The following case highlights a unique method of implant restoration when damage occurs to the implant fixture due to the attempted removal of a fractured screw.

ALSO BY DR. SCOTT FROUM |A new tool in the fight against peri-implant disease

Case study
A 58-year-old male with a noncontributory medical history presented to a private practice for a complete rehabilitation of his dentition due to years of bruxism and parafunction. (Fig. 1) After surgical and restorative consultations, a treatment plan was fabricated. The treatment plan included restoring his lost vertical dimension, restoring his natural dentition with porcelain-fused-to-metal full-coverage crowns, and replacing his lost posterior teeth with dental implants. After his vertical dimension was restored with an acrylic bite plate to a position harmonious with TMJ function, crown-lengthening surgery was performed. (Fig. 2)


Fig. 1


Fig. 2


Six weeks after, the teeth were temporized to develop soft tissue margins/interdental papillae. (Figs. 3 and 3a) The patient was kept in temporaries for three months, during which time an implant was placed in site No. 19. Both the natural dentition and the implant were completed at the same time, three months after implant placement. (Fig. 4) Because of the patient’s occlusal issues, the implant was screw-retained, and the patient was given a maxillary night guard. Three weeks after insertion, the patient presented with a loose abutment screw. The dentist tightened the screw and sent the patient home. This cycle was repeated two more times until the patient presented again with a loose crown, but this time, a fracture implant screw. The dentist attempted to remove the screw with a Cavitron and drilling the implant screw out to release preload, but to no avail. The case was then referred to my office for implant removal.


Fig. 3


Fig. 3a


Fig. 4

After taking a CT Scan (Fig. 5), I decided to try to save the implant in order to preserve the lingual housing. I sent the patient to an endodontist, Dr. Shawn Pobiner, who, with a microscope, was able to remove the broken screw. However, he informed me that the inside chamber was completely stripped and no longer capable of being engaged. After consultation with Marotta Dental Labs, it was decided that the best solution was to place an additional implant in site No. 18. (Fig. 6) After integration of No. 18, a cast post was fabricated and cemented in No. 19. Cement-retained splinted crowns were fabricated for the restoration of implant No. 18 and No. 19. (Fig. 7) Because splinted implant crowns have a completely different dynamic than individual implant crowns when it comes to their ability to withstand off-axis forces, this restoration has been a clinical success for the last three years. (Fig. 8)


Fig. 5


Fig. 6


Fig. 7


Fig. 8

Scott Froum, DDS, is a periodontist and co-editor of Surgical-Restorative Resource™ e-newsletter, as well as a contributing author for DentistryIQ. He is a clinical associate professor at the New York University Dental School in the Department of Periodontology and Implantology. Dr. Froum is in private practice in New York City. You may contact him through his website at www.drscottfroum.com.

References
1. Esposito H, Lekholm T. Biological factors contributing to failures of osseointegrated oral implants I. Success criteria and epidemiology. Eur J Oral Sci 1998;106:521-557.
2. Karoussis IK, Müller S, Salvi GE, Heitz-Mayfield LJ, Brägger U, Lang NP. Association between periodontal and peri-implant conditions: a 10-year prospective study. Clinical Oral Implants Research 2004;15:1-7.
3. Mombelli A, van Oosten MA, Schurch E, Lang NP. The microbiota associated with successful or failing osseointegration titanium implants. Oral Microbiology and Immunology. 1987;2: 145-151.
4. Brunski JB. Biomechanical factors affecting the bone-dental implant interface. Clin. Materials 1992;10:153-201.

More in Surgical Techniques